Part Number Hot Search : 
0AB007M2 DB105 10D10 LM239ADT M7640FP FG900 NLU1G07 KSC2223
Product Description
Full Text Search
 

To Download TA1304F Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  TA1304F/n 2001-02-16 1/31 toshiba bipolar linear integrated circuit silicon monolithic TA1304F,ta1304n tv-sound processor features sound processor  2 ch inputs (l-ch, r-ch)  3 ch outputs (l-ch, r-ch, w-ch)  volume, balance, treble, bass and woofer level control  built-in woofer low-pass filter  input matrix circuit  als (automatic level suppressor) circuit i / o port circuit  2 ch input ports  2 ch output ports weight: ssop24-p-300-1.00: 0.33 g (typ.) sdip24-p-300-1.78: 1.22 g (typ.)  toshiba is continually working to improve the quality and reliability of its products. nevertheless, semiconductor devices in ge neral can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. it is the responsibi lity of the buyer, when utilizing toshiba products, to comply with the standards of safety in making a safe design for the entire system, a nd to avoid situations in which a malfunction or failure of such toshiba products could cause loss of human life, bodily injury o r damage to property. in developing your designs, please ensure that toshiba products are used within specified operating ranges as set forth in the most recent toshiba products specifications. also, please keep in mind the precautions and conditions set forth in the ?handlin g guide for semiconductor devices,? or ?toshiba semiconductor reliability handbook? etc..  the toshiba products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). these toshiba products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfun ction o r failure of which may cause loss of human life or bodily injury (?unintended usage?). unintended usage include atomic energ y control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion cont rol instruments, medical instruments, all types of safety devices, etc.. unintended usage of toshiba products listed in this docume n t shall be made at the customer?s own risk.  the products described in this document are subject to the foreign exchange and foreign trade laws.  the information contained herein is presented only as a guide for the applications of our products. no responsibility is assume d b y toshiba corporation for any infringements of intellectual property or other rights of the third parties which may result from i ts use. no license is granted by implication or otherwise under any intellectual property or other rights of toshiba corporation o r others.  the information contained herein is subject to change without notice. 000707 eba1
TA1304F/n 2001-02-16 2/31 block diagram
TA1304F/n 2001-02-16 3/31 terminal function pin no. name function interface circuit 1 2 port 1 port 2 these are logical input terminals. threshold voltage is 2.3 v. the input level of these terminals are read by mcu through i 2 c bus lines. 3 port 3 a open collector type output controlled by mpu through i 2 c bus lines. maximum sink current is 1 ma. 4 port 4 a emitter follower type output controlled by mpu through i 2 c bus lines. this terminal can 3 level output, 0 v, 2.5 v and 5 v. maximum souce current is 2 ma, and maximum sink current is 250 a. 5 offset cancelling filter dc offset cancelling filter for woofer channel. connect a capacitor (10 f) between this terminal and gnd. 6 8 l-ch input r-ch input audio input terminals.
TA1304F/n 2001-02-16 4/31 pin no. name function interface circuit 7 gnd gnd terminal. D 9 bias filter filter for noise rejection of the bias. connect a capacitor (4.7 f) between this terminal and gnd. 10 15 bass lpf (r) bass lpf (l) lpfs for bass control circuits. connect capacitors (0.027 f) between each terminals and gnd. 11 14 treble hpf (r) treble hpf (l) hpfs for bass control circuits. connect capacitors (8200 pf) between each terminals and gnd. 13 12 16 w-ch output r-ch output l-ch output audio output terminals. bass boost function, addition woofer channel signal to main channel signals, is available. using als (automatic level suppressor), it can reduce distortion in large signal input condition.
TA1304F/n 2001-02-16 5/31 pin no. name function interface circuit 17 18 19 woofer lpf 1 woofer lpf 2 woofer lpf 3 lpf for woofer. connect a capacitor (0.033 f) between terminal 17 and gnd. connect a capacitor (0.047 f) terminal 18 and gnd. connect a capacitor (0.022 f) terminal 19 and gnd. 20 v cc v cc terminal. recommended operation voltage is 9 v 10%. D 21 volume filter smoothing filter for volume control. connect a capacitor (0.01 f) between this terminal and gnd. 22 woofer level filter smoothing filter for volume control. connect a capacitor (3.3 f) between this terminal and gnd. this filter is also for als control. 23 scl scl terminal.
TA1304F/n 2001-02-16 6/31 pin no. name function interface circuit 24 sda sda terminal.
TA1304F/n 2001-02-16 7/31 i 2 c bus control data table  slave address : 80 (h) / write mode 81 (h) / read mode  write mode address map sub address msb b6 b5 b4 b3 b2 b1 lsb default data 00 bass label (effective data range : 0e (h) ~72 (h)) 40 (h) (bass : center) 01 treble level (effective data range : 0e (h) ~72 (h)) 40 (h) (treble : center) 02 volume (effective data range : 00 (h) ~72 (h)) 00 (h) (volume : min.) 03 test sw ?0? : normal ?1? : test als sw ?0? : off ?1? : on als start point ?00? : 180 mv ?01? : 310 mv ?10? : 430 mv ?11? : 630 mv input att ?0? : 0 db ?1? : ? 5 db input matrix ?00? : normal ?01? : r-ch ?10? : l-ch ?11? : reverce 00 (h) (test sw : normal als sw : off als strat point : 150 mv input att : 0 db input matrix : normal) 04 woofer level (effective data range : 00 (h) ~72 (h)) 00 (h) (woofer level : min.) 05 balance (effective data range : 00 (h) ~7f (h)) 40 (h) (balance : center) 06 port 4 ?00? : 0.0 v ?01? : 2.5 v ?10? : 0.0 v ?11? : 5.0 v port 3 ?0? : on ?1? : off 20 (h) (port3 : on port4 : 0.0 v) 07 bass boost sw ?0? : on ?1? : off woofer lpf fo ?00? : 100 hz ?01? : 125 hz ?10? : 170 hz ?11? : 210 hz woofer lpf defeat ?0? : off ?1? : on mute 2 ?0? : off ?1? : on mute 1 ?0? : off ?1? : on 10 (h) (bass boost sw : off woofer lpf fo : 125 hz mute 1 : off mute 2 : off) the bits shown gray area must be ?0?.
TA1304F/n 2001-02-16 8/31  read mode address map msb b6 b5 b4 b3 b2 b1 lsb p.o.r 1 1 1 1 1 port 2 port 1 no function bits (shown gray area) are always ?1?.  p.o.r (power on reset) ?0? : after read access ?1? : power on reset  port1, 2 ?0? : ?high? ?1? : ?low? purchase of toshiba i 2 c components conveys a license under the philips i 2 c patent rights to use these components in an i 2 c system, provided that the system conforms to the i 2 c standard specification as define by philips.
TA1304F/n 2001-02-16 9/31 explanation of the functions. (note : (h) means hexadecimal data, (b) means binary data)  bass level (sub address 00 (h)) bass level control. cross-over frequency is 1 khz. effective control data range is 0e (h) ~72 (h) (100steps). set this data to 0e (h), bass level goes to minimum level, and set this data to 72 (h), bass level goes to maximum level. set this data to 40 (h), bass level goes to center level. switch on default data is 40 (h). control range is 12 db (typ.).  treble level (sub address 01 (h)) treble level control. cross-over frequency is 1 khz. effective control data range is 0e (h) ~72 (h) (100steps). set this data to 0e (h), treble level goes to minimum level, and set this data to 72 (h), treble level goes to maximum level. set this data to 40 (h), treble level goes to center level. switch on default data is 40 (h). control range is 12 db (typ.).  volume control (sub address 02 (h)) volume control of l-ch, r-ch, and w-ch outputs. effective control data range is 00 (h) ~72 (h) switch on default data is 00 (h).  woofer level control (sub address 04 (h)) volume control of only w-ch output. effective control data range is 00 (h) ~72 (h) switch on default data is 00 (h).  balance control (sub address 05 (h)) balance control. set this data to 40 (h), balance goes to center. effective control data range is 00 (h) ~7f (h). switch on default data is 40 (h).  input matrix control (sub address 03 (h) / b1~b0) output signal selection control. set these bits to 00 (b), output mode goes to normal mode (input signal of terminal 6 is outputted to terminal 16, and input signal of terminal 8 is outputted to terminal 13). set these bits to 01 (b) output mode goes to r-ch mode (input signal of terminal 8 is outputted to terminal 13 and terminal 16). set these bits to 10 (b) output mode goes to l-ch mode (input signal of terminal 6 is outputted to terminal 13 and terminal 16). set these bits to 11 (b), output mode goes to reverce mode (input signal of terminal 6 is outputted to terminal 13, and input signal of terminal 8 is outputted to terminal 16). switch on default data is 00 (b).
TA1304F/n 2001-02-16 10/31  input attenuation control (sub address 03 (h) / b2) when this function is active, input signals are ? 5 db attenuated at input stage of l-ch and r-ch. w-ch signal isn't attenuated. so, w-ch output level is up to 8 db from l-ch and r-ch outputs relatively. set the bit to 0 (b), attenuation is inactive, set the bit to 1 (b), attenuation is active. switch on default data is 0 (b).  als switch (sub address 03 (h) / b6), als start point (sub address 03 (h) / b5~b4) when bass boost function (addition woofer ch signal to main ch signals) is active, output signals are distort when the signals are over the dynamic range of the circuits. als (a utomatic l evel s uppressor) suppresses w-ch signal level under als strat point, reduces the distortion in large signals input condition. set the bit (sub address 03 (h) / b6) to 0 (b), als is inactive. set the bit to 1 (b), als is active. switch on default data is 0 (b). the bits of 03 (h) / b5~b4 set als start point. set the bits to 00 (b), als start point is 180 mv rms . set the bits to 01 (b), als start point is 310 mv rms . set the bits to 10 (b), als start point is 430 mv rms . and set the bits to 11 (b), als start point is 630 mv rms . switch on default data is 00 (b).  test switch (sub address 03 (h) / b7) this bit is for ic testing. so this bit must be set to 0 (b). switch on default data is 0 (b).  port 3 control (sub address 06 (h) / b3), port 4 control (sub address 06 (h) / b5~b4) the ic, e.g. sound demltiplexer, which isn?t avarailable i 2 c bus, can be controlled by i 2 c bus through TA1304F. port 3 is open-collector type output. set the bit to 0 (b), port3 is on. set the bit to 1 (b), port3 is off. switch on default data 0 (b). port 4 is emitter-follower type output. it can output 3 levels. set the bits to 00 (b) or 10 (b), port 4 outputs 0 v. set to 01 (b), port 4 outputs 2.5 v. set to 11 (b), port 4 outputs 5 v. switch on default data is 00 (h).  mute 1 (sub address 07 (h) / b0), mute 2 (sub address 07 (h) / b1) when mute 1 is active, all outputs are muted. set the bit to 0 (b), mute 1 is inactive. set the bit to 1 (b), mute 1 is active. switch on default data is 0 (b). when mute 2 is active, only w-ch output is muted. set the bit to 0 (b), mute 2 is inactive. set the bit to 1 (b), mute 2 is active. switch on default data is 0 (b).
TA1304F/n 2001-02-16 11/31  woofer lpf fo (sub address 07 (h) / b5~b4) these bits set cut off frequency (fo) of the low pass filter for w-ch. set the bits to 00 (b), fo is 100 hz ( ? 3 db point). set the bits to 01 (b), fo is 125 hz. set the bits to 10 (b), fo is 170 hz. set the bits to 11 (b), fo is 210 hz. switch on default data is 01 (h).  woofer lpf defeat (sub address 07 (h) / b3) set the bit to 1 (b), woofer lpf is defeated. this function is for ic testing. so, this bit must be set to 0 (b). switch on default data is 0 (b).  bass boost switch (sub address 07 (h) / b7) bass boost function is adding w-ch signal to main channel signals. it can boost low frequency signal without woofer output. set the bit to 0 (b), bass boost is inactive. set the bit to 1 (b), bass boost is active. switch on default data is 0 (b).
TA1304F/n 2001-02-16 12/31 maximum ratings (ta = 25c) characteristic symbol rating unit supply voltage v cc 12 v power dissipation p d TA1304F: 833 (note 1) ta1304n: 1400 (note 2) mw operating temperature t opr ? 20~75 c storage temperature t stg ? 55~150 c maximum input voltage v max v cc + 0.3 v minimum input voltage v min gnd ? 0.3 v note 1: this value is on contion that the ic is mounted on pcb (50 mm 50 mm). when using the device at ta = 25c, decrease the power dissipation by 6.7 mw for each increase of 1c. note 2: when using the device at ta = 25c, decrease the power dissipation by 11.2 mw for each increase of 1c. commended supply voltage pin no. pin name min typ. max unit 20 v cc 8.1 9.0 9.9 v electrical characteristics dc current characteristics (v cc = 9.0 v, ta = 25c) pin no. pin name symbol min typ. max unit 20 v cc i cc 22 34 45 ma dc voltage characteristics (v cc = 9.0 v, ta = 25c) pin no. symbol test cir- cuit test condition min typ. max unit 3 v 3 D D D 0.5 4 v 4 D D D 0.5 5 v 5 D 4.0 4.5 5.0 6 v 6 D 4.0 4.5 5.0 8 v 8 D 4.0 4.5 5.0 9 v 9 D 5.2 5.7 6.2 10 v 10 D 4.0 4.5 5.0 11 v 11 D 4.0 4.5 5.0 12 v 12 D 4.0 4.5 5.0 13 v 13 D 4.0 4.5 5.0 14 v 14 D 4.0 4.5 5.0 15 v 15 D 4.0 4.5 5.0 16 v 16 D 4.0 4.5 5.0 17 v 17 D 4.6 5.1 5.6 18 v 18 D 4.6 5.1 5.6 19 v 19 D 4.6 5.1 5.6 21 v 21 D D 0.0 D 22 v 22 D in power on defalt 0.5 1.5 2.0 v
TA1304F/n 2001-02-16 13/31 ac characteristics (v cc = 9.0 v, ta = 25c) characteristic symbol test cir- cuit test condition min typ. max unit go l D go r D 0.0 2.0 4.0 goatt l D goatt r D ? 7.0 ? 5.0 ? 3.0 gobst l D gobst r D 11.0 13.0 15.0 gain go w D (note 1) 16.0 19.0 22.0 db thd l D thd r D 0.03 thd thd w D (note 2) D 0.2 1.0 % sn l D sn r D 70 s / n sn w D (note 3) 68 D D db v no l D v no r D residual noise v no w D (note 4) D D 50 v rms go100 l D frequency response (100 hz) go100 r D (note 5) ? 2.0 0.0 2.0 db go10k l D frequency response (10 khz) go10k r D (note 6) ? 2.0 0.0 2.0 db g lpf 100 D 4.0 6.0 8.0 g lpf 125 D 5.5 7.5 9.5 g lpf 170 D 4.0 6.0 8.0 lpf frequency response g lpf 210 D (note 7) 1.0 8.0 15.0 db balance center ? g lr D (note 8) ? 2.0 0.0 2.0 g blmin l D balance minimum g blmin r D (note 9) D D ? 60 db g bsmax l D bass maximum g bsmax r D (note 10) 10 12 14 db g bsmin l D bass minimum g bsmin r D (note 11) ? 14 ? 12 ? 10 db g trmax l D treble maximum g trmax r D (note 12) 10 12 14 db g trmin l D treble minimum g trmin r D (note 13) ? 14 ? 12 ? 10 db g vlcnt l D g vlcnt r D volume center g vlcnt w D (note 14) ? 17 ? 15 ? 12 db g vlmin l D g vlmin r D volume minimum g vlmin w D (note 15) D D ? 65 db woofer level center g wlcnt D (note 16) ? 9.5 ? 7.5 ? 5.5 db
TA1304F/n 2001-02-16 14/31 characteristic symbol test cir- cuit test condition min typ. max unit als start point 0 v als 0 D 142 180 226 als start point 1 v als 1 D 246 310 391 als start point 2 v als 2 D 341 430 541 als start point 3 v als 3 D (note 17) 500 630 794 mvrms ct l-r D cross talk ct r-l D (note 18) D D ? 75 db rr1 l D rr1 r D ripple rejection (volume minimum) rr1 w D (note 19) D D ? 30 db rr2 l D rr2 r D ? 30 ripple rejection (volume maximum) rr2 w D (note 20) D D ? 25 db v dout l D v dout r D output dynamic range v dout w D (note 21) 6.0 6.7 D v p-p v din l D v din r D 5.5 7.0 input dynamic range v din w D (note 22) 3.0 4.2 D v p-p ? vl D ? vr D dc offset ? vw D (note 23) D D 350 mv g mut l D g mut r D mute redsisual level g mut w D (note 24 ) D D ? 70 db v inl 1 D port 1, 2 low-level voltage v inl 2 D (note 25) 1.0 D D v v inh 1 D port 1, 2 high-level voltage v inh 2 D (note 26) D D 3.5 v port 3 low-level voltage v 3low D (note 27) D D 0.5 v port 4 low-level voltage v 4low D D D 0.5 v port 4 medium-level voltage v 4mid D 2.0 2.5 3.0 v port 4 high-level voltage v 4hi D (note 28) 4.5 5.0 5.5 v
TA1304F/n 2001-02-16 15/31 test condition bus data (hexadecimal) note input point meas. point 00 01 02 03 04 05 06 07 sw 1 test method 1 tp6 tp8 tp12 tp13 tp16 40 40 72 00 / 04 72 40 * 10 / 90 (a)  set data of sub address 03 (h) to 00 (h) and set data of sub address 07 (h) to 10 (h).  input signal (1 khz, 500 mv rms , sine wave) to tp6 and tp8.  measure amplitude of tp13 and tp16 (v13 1 mv rms , v16 1 mv rms ).  go r db = 20 ? og (v13 1 / 500) go l db = 20 ? og (v16 1 / 500)  set data of sub address 03 (h) to 04 (h).  measure amplitude of tp13 and tp16 (v13 2 mv rms , v16 2 mv rms ).  goatt r db = 20 ? og (v13 2 / 13 1 ) goatt l db = 20 ? og (v16 2 / 16 1 )  set data of sub address 03 (h) to 00 (h) and set data of sub address 07 (h) to 10 (h).  input signal (80 hz, 125 mv rms , sine wave) to tp6 and tp8  measure amplitude of tp13 and tp16 (v13 3 mv rms , v16 3 mv rms ).  set data of sub address 07 (h) to 90 (h).  measure amplitude of tp13 and tp16 (v13 4 mv rms , v16 4 mv rms ).  gobst r db = 20 ? og (v13 4 / 13 3 ) gobst l db = 20 ? og (v16 4 / 16 3 )  measure amplitude of tp12 (v12 mv rms ).  go w db = 20 ? og (v12 / 125) 2 00 *10  input signal (1 khz, 500 mv rms , sine wave) to tp6 and tp8  measure thd of tp13 and tp16 (thd r %, thd l %).  input signal (80 hz, 125 mv rms , sine wave) to tp6 and tp8.  measure thd of tp12 (thd w %) *: don?t care
TA1304F/n 2001-02-16 16/31 bus data (hexadecimal) note input point meas. point 00 01 02 03 04 05 06 07 sw 1 test method 3 tp6 tp8 tp12 tp13 tp16 40 40 72 00 72 40 * 10 (a)  input signal (1 khz, 500 mv rms , sine wave) to tp6 and tp8  measure amplitude of tp13 and tp16 (v13s mv rms , v16s mv rms ).  connect tp6 and tp8 to gnd.  measure amplitude of tp13 and tp16 (v13n mv rms , v16n mv rms ).  sn r db = 20 ? og (v13 s / v13 n ) sn l db = 20 ? og (v16 s / v16 n )  input signal (80 hz, 125 mv rms , sine wave) to tp6 and tp8.  measure amplitude of tp12 (v12 s mv rms ).  connect tp6 and tp8 to gnd.  measure amplitude of tp12 (v 12n mv rms ).  sn w db = 20 ? og (v12 s / v12 n ) 4 D 00 00 *  connect tp6 and tp8 to gnd.  measure amplitude of tp12, tp13 and tp16 (v no w v rms , v no r v rms , v no l v rms ). 5 tp6 tp8 tp12 tp13 72 72 *  input signal (1 khz, 500 mv rms , sine wave) to tp6 and tp8.  measure amplitude of tp13 and tp16 (v13 o mv rms , v16 o mv rms ).  input signal (100 hz, 500 mv rms, sine wave) to tp6 and tp8  measure amplitude of tp13 and tp16(v13 mv rms , v16 mv rms ).  go100 r db = 20 ? og (v13 / v13 o ) go100 l db = 20 ? og (v16 / v16 o ) 6 *  input signal (1 khz, 500 mv rms , sine wave) to tp6 and tp8.  measure amplitude of tp13 and tp16 (v13 o mv rms , v16 o mv rms ).  input signal (10 khz, 500 mv rms , sine wave) to tp6 and tp8.  measure amplitude of tp13 and tp16 (v13 mv rms , v16 mv rms ).  go10k r db = 20 ? og (v13 / v13 o ) go10k l db = 20 ? og (v16 / v16 o ) *: don?t care
TA1304F/n 2001-02-16 17/31 bus data (hexadecimal) note input point meas. point 00 01 02 03 04 05 06 07 sw 1 test method 7 tp6 tp8 tp12 40 40 72 00 72 40 * 00 / 10 / 20 / 30 / 14 (a)  input signal (300 hz, 125 mv rms , sine wave) to tp6 and tp8.  set data of sub address 07 (h) to 00 (h).  measure amplitude of tp12 (v12 0 mv rms ).  set data of sub address 07 (h) to 10 (h)  measure amplitude of tp12 (v12 1 mv rms ).  set data of sub address 07 (h) to 20 (h)  measure amplitude of tp12 (v12 2 mv rms ).  set data of sub address 07 (h) to 30 (h).  measure amplitude of tp12 (v12 3 mv rms ).  set data of sub address 07 (h) to 14 (h).  measure amplitude of tp12 (v12 x mv rms ).  g lpf 80 db = 20 ? og (v12 0 / v12 1 ) g lpf 100 db = 20 ? og (v12 1 / v12 2 ) g lpf 130 db = 20 ? og (v12 2 / v12 3 ) g lpf 160 db = 20 ? og (v12 3 / v12 x ) 8 tp13 tp16 * 10  input signal (1 khz, 500 mv rms , sine wave) to tp6 and tp8.  measure amplitude of tp13 and tp16 (v13 mv rms , v16 mv rms ).  ? g lr db = 20 ? og (v16 / v13) *: don?t care
TA1304F/n 2001-02-16 18/31 bus data (hexadecimal) note input point meas. point 00 01 02 03 04 05 06 07 sw 1 test method 9 tp6 tp8 tp13 tp16 40 40 72 00 72 0e / 72 *10(a)  input signal (1 khz, 500 mv rms , sine wave) to tp6 and tp8.  set data of sub address 05 (h) to 0e (h).  measure amplitude of tp13 and tp16 (v13 r mv rms , v16 r mv rms ).  set data of sub address 05 (h) to 72 (h).  measure amplitude of tp13 and tp16 (v13 l mv rms , v16 l mv rms ).  g blmin r db = 20 ? og (v13 r / v16 r ) g blmin n l db = 20 ? og (v16 l / v13 l ) 10 40 / 72 40 *  input signal (100 hz, 250 mv rms , sine wave) to tp6 and tp8.  set data of sub address 00 (h) to 40 (h).  measure amplitude of tp13 and tp16 (v13 o mv rms , v16 o mv rms ).  set data of sub address 00 (h) to 72 (h).  measure amplitude of tp13 and tp16 (v13 b mv rms , v16 b mv rms ).  g bsmax r db = 20 ? og (v13 b / v13 o ) g bsmax l db = 20 ? og (v16 b / v16 o ) 11 40 / 0e *  input signal (100 hz, 250 mv rms , sine wave) to tp6 and tp8.  set data of sub address 00 (h) to 40 (h).  measure amplitude of tp13 and tp16 (v13 o mv rms , v16 o mv rms ).  set data of sub address 00 (h) to 0e (h).  measure amplitude of tp13 and tp16 (v13 b mv rms , v16 b mv rms ).  g bsmin r db = 20 ? og (v13 b / v13 o ) g bsmin l db = 20 ? og (v16 b / v16 o ) *: don?t care
TA1304F/n 2001-02-16 19/31 bus data (hexadecimal) note input point meas. point 00 01 02 03 04 05 06 07 sw 1 test method 12 tp6 tp8 tp13 tp16 40 40 / 27 72 00 72 40 * 10 (a)  input signal (10 khz, 250 mv rms , sine wave) to tp6 and tp8.  set data of sub address 01 (h) to 40 (h).  measure amplitude of tp13 and tp16 (v13 o mv rms , v16 o mv rms ).  set data of sub address 01 (h) to 72 (h).  measure amplitude of tp13 and tp16 (v13 t mv rms , v16 t mv rms ).  g trmax r db = 20 ? og (v13 t / v13 o ) g trmax l db = 20 ? og (v16 t / v16 o ) 13 40 / 0e *  input signal (10 khz, 250 mv rms , sine wave) to tp6 and tp8.  set data of sub address 01 (h) to 40 (h).  measure amplitude of tp13 and tp16 (v13 o mv rms , v16 o mv rms ).  set data of sub address 01 (h) to 0e (h).  measure amplitude of tp13 and tp16 (v13 t mv rms , v16 t mv rms ).  g trmin r db = 20 ? og (v13 t / v13 o ) g trmin l db = 20 ? og (v16 t / v16 o ) *: don?t care
TA1304F/n 2001-02-16 20/31 bus data (hexadecimal) note input point meas. point 00 01 02 03 04 05 06 07 sw 1 test method 14 tp6 tp8 tp12 tp13 tp16 40 40 72 / 40 00 72 40 * 10 (a)  input signal (1 khz, 500 mv rms , sine wave) to tp6 and tp8.  set data of sub address 02 (h) to 72 (h).  measure amplitude of tp13 and tp16 (v13 o mv rms , v16 o mv rms ).  set data of sub address 02 (h) to 40 (h).  measure amplitude of tp13 and tp16 (v13 c mv rms , v16 c mv rms ).  g vlcnt r db = 20 ? og (v13 c / v13 o ) g vlcnt l db = 20 ? og (v16 c / v16 o )  input signal (80 hz, 125 mv rms , sine wave) to tp6 and tp8  set data of sub address 02 (h) to 72 (h).  measure amplitude of tp12 (v12 o mv rms ).  set data of sub address 02 (h) to 40 (h).  measure amplitude of tp12 (v12 c mv rms ).  g vlcnt w db = 20 ? og (v12c / v12o) *: don?t care
TA1304F/n 2001-02-16 21/31 bus data (hexadecimal) note input point meas. point 00 01 02 03 04 05 06 07 sw 1 test method 15 tp6 tp8 tp12 tp13 tp16 40 40 72 / 0e 00 72 40 * 10 (a)  input signal (1 khz, 500 mv rms , sine wave) to tp6 and tp8.  set data of sub address 02 (h) to 72 (h).  measure amplitude of tp13 and tp16 (v13 o mv rms , v16 o mv rms ).  set data of sub address 02 (h) to 0e (h).  measure amplitude of tp13 and tp16 (v13 min mv rms , v16 min mv rms ).  g vlmin r db = 20 ? og (v13 min / v13 o ) g vlmin l db = 20 ? og (v16 min / v16 o )  input signal (80 hz, 125 mv rms , sine wave) to tp6 and tp8  set data of sub address 02 (h) to 72 (h).  measure amplitude of tp12 (v12 o mv rms ).  set data of sub address 02 (h) to 0e (h).  measure amplitude of tp12 (v12 min mv rms ).  g vlmin w db = 20 ? og (v12 min / v12 o ) 16 tp12 72 72 / 40 *  input signal (80 hz, 125 mv rms , sine wave) to tp6 and tp8  set data of sub address 04 (h) to 72 (h)  measure amplitude of tp12 (v12 o mv rms ).  set data of sub address 04 (h) to 40 (h).  measure amplitude of tp12 (v12 c mv rms ).  g wlcnt db = 20 ? og (v12 c / v12 o ) *: don?t care
TA1304F/n 2001-02-16 22/31 bus data (hexadecimal) note input point meas. point 00 01 02 03 04 05 06 07 sw 1 test method 17 tp6 tp8 tp12 40 40 72 40 / 50 / 60 / 70 72 40 * 10 (a)  input signal (80 hz, 500 mv rms , sine wave) to tp6 and tp8  set data of sub address 03 (h) to c0 (h).  measure amplitude of tp12 (v als 0 v p-p ).  set data of sub address 03 (h) to d0 (h).  measure amplitude of tp12 (v als 1 v p-p ).  set data of sub address 03 (h) to e0 (h).  measure amplitude of tp12 (v als 2 v p-p ).  set data of sub address 03 (h) to f0 (h).  measure amplitude of tp12 (vals 3 v p-p ). 18 tp13 tp16 00 *  connect tp8 to gnd.  input signal (1 khz, 500 mv rms , sine wave) to tp6.  measure 1 khz spectrum of tp16 output (vtp16 dbv).  measure 1 khz spectrum of tp13 output (vtp13 dbv).  ct l-r db = vtp16 ? vtp13  connect tp6 to gnd.  input signal (1 khz, 500 mv rms , sine wave) to tp8.  measure 1 khz spectrum of tp13 output (vtp13 dbv).  measure 1 khz spectrum of tp16 output (vtp16 dbv).  ct r-l db = vtp13 ? vtp16 19 D tp12 tp13 tp16 00 00 * (b)  apply 9.0 v dc and sine wave (60 hz, 500 mv rms ) to v cc terminal.  measure amplitude of tp12, tp13 and tp16 (vtp12 mv rms , vtp13 mv rms , vtp16 mv rms ).  rr1 w db = 20 ? og (vtp12 / 500) rr1 r db = 20 ? og (vtp13 / 500) rr1 l db = 20 ? og (vtp16 / 500) *: don?t care
TA1304F/n 2001-02-16 23/31 bus data (hexadecimal) note input point meas. point 00 01 02 03 04 05 06 07 sw 1 test method 20 D tp12 tp13 tp16 40 40 72 00 72 40 * 10 (b)  apply 9.0 v dc and sine wave (60 hz, 500 mv rms ) to v cc terminal.  measure amplitude of tp12, tp13 and tp16 (vtp12 mv rms , vtp13 mv rms , vtp16 mv rms ).  rr1 w db = 20 ? og (vtp12 / 500) rr1 r db = 20 ? og (vtp13 / 500) rr1 l db = 20 ? og (vtp16 / 500) 21 tp6 tp8 tp12 tp13 tp16 72 72 * (a)  input signal (100 hz, sine wave) to tp6 and tp8.  increase amplitude of the input signal, and measure thd of tp13 and tp16.  measure amplitude of tp13 and tp16 when thd of the output is 1% (v dout r1 v p-p , v out l1 v p-p ).  input signal (10 khz, sine wave) to tp6 and tp8.  increase amplitude of the input signal, and measure thd of tp13 and tp16.  measure amplitude of tp13 and tp16 when thd of the output is 1% (v dout r2 v p-p , v dout l2 v p-p ).  smaller value v dout r1 or v dout r2 is v dout r. smaller value v dout l1 or v dout l2 is v dout l.  input signal (80 hz, sine wave) to tp6 and tp8.  increase amplitude of the input signal, and measure thd of tp12.  measure amplitude of tp12 when thd of the output is 1% (v dout w v p-p ). *: don?t care
TA1304F/n 2001-02-16 24/31 bus data (hexadecimal) note input point meas. point 00 01 02 03 04 05 06 07 sw 1 test method 22 tp6 tp8 tp12 tp13 tp16 40 40 40 00 40 40 * 10 (a)  input signal (1 khz, sine wave) to tp6 and tp8.  increase amplitude of the input signal, and measure thd of tp13 and tp16.  measure amplitude of tp13 and tp16 when thd of the output is 1% (v din r v p-p , v din l v p-p ).  input signal (80 hz, sine wave) to tp6 and tp8.  increase amplitude of the input signal, and measure thd of tp13 and tp16.  measure amplitude of tp13 and tp16 when thd of the output is 1% (v din w v p-p ). 23 D 72 00~03 72 * 00 / 01 / 02  connect tp6 and tp8 to gnd.  change data of sub address 03 (h) to 00 (h) ~03 (h).  change data of sub address 07 (h) to 00 (h), 01 (h) and 02 (h).  measure dc off set of tp12, tp13, tp16 ( ? v r mv, ? v l mv, ? v w mv). *: don?t care
TA1304F/n 2001-02-16 25/31 bus data (hexadecimal) note input point meas. point 00 01 02 03 04 05 06 07 sw 1 test method 24 tp6 tp8 tp12 tp13 tp16 40 40 72 00 72 40 * 00 / 01 / 02 (a)  input signal (1 khz, 500 mv rms , sine wave) to tp6 and tp8.  set data of sub address 07 (h) to 00 (h).  measure amplitude of tp13 and tp16 (v13 o mv rms . v16 o mv rms ).  set data of sub address 07 (h) to 01 (h).  measure amplitude of tp13 and tp16 (v13 mut mv rms , v16 mut mv rms ).  g mut r db = 20 ? og (v13 mut / v13 o ) g mut l db = 20 ? og (v16 mut / v16 o )  input signal (80 hz, 125 mv rms , sine wave) to tp6 and tp8.  set data of sub address 07 (h) to 00 (h).  measure amplitude of tp12 (v12 o mv rms ).  set data of sub address 07 (h) to 01 (h).  measure amplitude of tp12 (v12 mut mv rms ).  g mut w db = 20 ? og (v12 mut / v12 o ) 25 tp1 tp2 D * * * ****  apply 5 v to tp1 and tp2.  decrease voltage of tp1, and read ic status by i 2 c bus.  measure voltage of tp1 when ic status is changed 00 (h) to 01 (h) (v inl 1 v).  apply 5 v to tp1 and tp2.  decrease voltage of tp2, and read ic status by i 2 c bus.  measure voltage of tp1 when ic status is changed 00 (h) to 02 (h) (v inl 2 v). *: don?t care
TA1304F/n 2001-02-16 26/31 bus data (hexadecimal) note input point meas. point 00 01 02 03 04 05 06 07 sw 1 test method 26 tp1 tp2 D * * * 00 * * * * (a)  apply 0 v to tp1 and apply 5 v to tp2.  increase voltage of tp1, and read ic status by i 2 c bus.  measure voltage of tp1 when ic status is changed 01 (h) to 00 (h) (v inh 1 v).  apply 5 v to tp1 and apply 0 v to tp2.  increase voltage of tp1, and read ic status by i 2 c bus.  measure voltage of tp1 when ic status is changed 02 (h) to 00 (h) (v inh 2 v). 27 D tp3 * * * * * * 04 *  measure voltage of tp3 (v 3low v). 28 D tp4 * * * 00 * * 00 / 10 / 30 *  set data of 06 (h) to 00 (h).  measure voltage of tp4 (v 4low v).  set data of 06 (h) to 10 (h).  measure voltage of tp4 (v 4mid v).  set data of 06 (h) to 30 (h).  measure voltage of tp4 (v 4hi v). *: don?t care
TA1304F/n 2001-02-16 27/31 dc test circuit
TA1304F/n 2001-02-16 28/31 ac test circuit
TA1304F/n 2001-02-16 29/31 application circuit
TA1304F/n 2001-02-16 30/31 package dimensions weight: 0.33 g (typ.)
TA1304F/n 2001-02-16 31/31 package dimensions weight: 1.22 g (typ.)


▲Up To Search▲   

 
Price & Availability of TA1304F

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X